Identifying Cluster Structures in High-dimensional Data

Anjoreoluwa Boluwajoko, Abdalah Namwenje, Mohamed Hussien, Gisel Kuatse

Department of Computer Science and Applied Mathematics Wits University

January 25, 2025

- 1. Introduction
- 2. K-mean Clustering
- 3. Graph Theory for Dummies
- 4. Spectral Clustering
- 5. Compressed Sensing Theory

Problem Statement

The purpose of the presentation is to apply unsupervised machine learning techniques to the high-dimensional data in order to obtain an optimal cluster structure.

The Importance and Applications of Clustering High dimensional Data

Feature	Description
Importance	Dimensionality reduction, noise reduction, pattern discovery, anomaly-detection.
Applications	Bioinformatics, image processing, market segmentation, Finance.

Table: Summary of the importance and applications of clustering high-dimensional data.

Definition

K-means clustering is an unsupervised machine learning algorithm used to partition data into k distinct clusters. The goal of the algorithm is to group data points with similar features in a unique cluster.

K-means Clustering

K-means Clustering, k = 3

K-means Clustering, k = 4

K-means Clustering, k = 10

Issue	Impact	Possible Improvement
Fixed number of K- cluster	Incorrect choice of K can lead to over clustering or under clustering	Use Elbow Method
Dimensionality	Distance becomes less meaningful in high di- mensions, hence reduc- ing clustering quality	Apply dimensionality
Sensitive to outliers	Outliers can shift cluster centriods, leading to in- nacurate cluster assign- ments	Detect and remove out- liers using K-medioids

Graph Theory for Dummies

Definition

Data can be treated as a graph. A graph G consists of vertices and edges where vertices represent the data points and edges represent the similarity/connection between the data point.

Definition

Spectral clustering is an unsupervised machine learning algorithm that uses graph theory to partition data into clusters by representing the data points as a graph and using eigenvalues of a similarity matrix from the graph to find clusters.

Figure: Spectral Clustering General Algorithm

 Represent the data point as a complete graph where the data points are the vertices and the edges are the similarities

•Assign a weight to each edge using the formula

$$a_{ij} = \exp\left(-\frac{\left|\left|s_{i} - s_{j}\right|\right|_{2}^{2}}{2\sigma^{2}}\right)$$

•This is the Adjency Matrix, $A = (a_{ij})$

Construct the Graph Laplacian:

Construct a Diagonal Matrix D such that

$$D_{ii} = \sum_{j=1}^{n} a_{ij}$$

• Unnormalized Laplacian Matrix:

$$L = D - A$$

• Normalized Laplacian :

$$L = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$$

- **Eigenvalues:** They are all non-negative because the matrix L is symmetric positive definite.
- Select the first k smallest eigen values $\lambda_i \neq 0$.
- Eigenvectors: Form the new feature subspace, matrix U, by taking the eigenvectors u_l that correspond to the chosen eigenvalues.
- The columns of U are the calculated eigenvectors.

 $U = \begin{bmatrix} u_1, & u_2, & \cdots, & u_k \end{bmatrix}$

- Treat the rows of U as data points.
- Create U_{norm} by normalizing the

rows of U

• Apply K – means to the rows of U

• Assign the labels of the data points in

 U_{norm} to the original data points in S

Moons Clustering With k-means Algorithm

Moons Clustering With Spectral Clustering Algorithm

Spectral Clustering Data

Issue	Impact	Possible Improvement
High computational cost $(O(n^3))$	Slow for large datasets	Approximation methods (e.g., Nyström) for eigen- values
Parameter sensitivity(σ)	Poor clustering with bad parameters	Use heuristics for k, me- dian for all pairwise dis- tances
Graph connectivity is- sues(Assuming all points are connected)	Incorrect eigenvector cal- culations and clustering	Using compressed sens- ing theory

• The more zeros a matrix has, the easier it becomes to compute the eigenvalues and this gives us fewer nonzero eigenvalues to deal with.

Theorem: Compressed Sensing Theorem

Assuming that a dataset is:

- i Self-expressive
- ii Noise free
- iii Has clusters that are independent and disjoint

Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to undetermined linear systems.

Sparse Optimization

- According to Compressed Sensing Theorem, data points in the same cluster can be represented as linear combinations of each other.
- Sparse Optimization Helps create a matrix A with as few non-zero elements as possible using the constrained objective function:

min
$$||w_i||_1$$
 s.t. $s_i = Sw_i$, $w_{ii} = 0$ (1)

- The constraint *w_{ii}* eliminates the trivial solution of writing a point as a linear combination of itself.
- The system is undetermined hence there are infinetly many solutions. The main idea is that amoung all solutions, there exists a sparse solution, w_i , whose nonzero entries correspond to data points from the same subspace as s_i .
- After solving for the W matrix, the Adjency Matrix can be computed as:

$$A = |W| + |W|^{T}$$

• The constrained objective function can be compactly written in matrix form as

min
$$\|\mathbf{W}\|_1$$
 s.t. $\mathbf{S} = \mathbf{SW}$, diag $(\mathbf{W}) = \mathbf{0}$ (2)

• The unconstrained objective function takes the form

$$\min_{W} F(W) = \mu \|W\|_1 + \frac{1}{2} \|SW - S\|_f^2 \quad , \quad diag(W) = 0 \tag{3}$$

• Solving this problem is a mess because for some input matrix B

$$|B||_{f}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}^{2} \rightarrow \text{smooth} \quad and \quad ||B||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |b_{ij}| \rightarrow \text{nonsmooth}$$

Fast Iterative Shrinkage-Threshold Algorithm

Algorithm 1 FISTA with Matrix Input 1: Initialize $Z_1 = W_0 = 0 \in \mathbb{R}^{n \times n}$. $t_1 = 1$ 2: for k > 1 do: $W_k = p_{\mu\alpha}(Z_k)$ (hold your questions!) 3: $diag(W_k) = 0$ 4: $t_{k+1} = rac{1 + \sqrt{1 + 4t_k^2}}{2}$ 5: $Z_{k+1} = W_k + \left(\frac{t_k - 1}{t_{k+1}}\right) \left(W_k - W_{k-1}\right)$ 6: break if $\|W_{k+1} - W_k\|_F < \text{tol}$ 7: else $W_{k+1} = p_{\mu\alpha}(Z_{k+1})$ 8: return W_k 9:

let $x \in \mathbb{R}^n$ For some function

$$F(x) = f(x) + g(x)$$

where f(X) is a smooth function, g(X) in non smooth. We can use the quadratic approximation of F at a given point $y \in \mathbb{R}^n$ as

$$Q_{lpha}(x,y)pprox f(y)+
abla f(y)^T(x-y)+rac{1}{2lpha}\|x-y\|_2^2+g(x)$$

if $g(x) = \mu \|x\|_1$, $Q_{\alpha\mu}(x,y)$ admits a unique minimizer

$$p_{\mu\alpha} = arg \min_{x} \{Q_{\alpha\mu}(x,y) : x \in \mathbb{R}^n\}$$

$$p_{\mu\alpha} = arg \min_{x} \{Q_{\alpha\mu}(x,y) : x \in \mathbb{R}^n\}$$

The solution to this is called the shrinkage operator where for some input $v \in \mathbb{R}$

$$\mathbb{T}_{\mulpha}(\mathbf{v}) := \max\{\mathbf{0}, |\mathbf{v}| - \mulpha\} \cdot \textit{sgn}(\mathbf{v})$$

- R. Xu and D. C. Wunsch II, "Survey of clustering algorithms," IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.
- K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, "When is "nearest neighbour" meaningful?" in Int. Conf. Database Theory. Springer, 1999, pp. 217–235.
- L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data: a review," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 90–105, 2004.
- R. Vidal, "Subspace clustering," IEEE Signal Processing Magazine, vol. 28, no. 2, pp. 52–68, 2011.
- Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), pp.183-202.

The End