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Introduction

Problem Statement

The purpose of the presentation is to apply unsupervised machine learning techniques to
the high-dimensional data in order to obtain an optimal cluster structure.

The Importance and Applications of Clustering High dimensional Data

Feature Description

Importance Dimensionality reduction, noise reduction,pattern discovery,anomaly-detection.
Applications Bioinformatics, image processing,market segmentation,Finance.

Table: Summary of the importance and applications of clustering high-dimensional data.
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Presentation of Data
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K-mean Clustering

Definition

K-means clustering is an unsupervised machine learning algorithm used to partition data
into k distinct clusters. The goal of the algorithm is to group data points with similar
features in a unique cluster.
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K-means Clustering
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K-means Clustering, k = 3
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K-means Clustering, k = 4
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K-means Clustering, k = 10
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Limitations of K-means Clustering

Issue Impact Possible Improvement

Fixed number of K-
cluster

Incorrect choice of K can
lead to over clustering or
under clustering

Use Elbow Method

Dimensionality

Distance becomes less
meaningful in high di-
mensions, hence reduc-
ing clustering quality

Apply dimensionality

Sensitive to outliers

Outliers can shift cluster
centriods, leading to in-
nacurate cluster assign-
ments

Detect and remove out-
liers using K-medioids
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Graph Theory for Dummies

Definition

Data can be treated as a graph. A graph G consists of vertices and edges where vertices
represent the data points and edges represent the similarity/connection between the data
point.

11 / 29



Spectral Clustering

Definition

Spectral clustering is an unsupervised machine learning algorithm that uses graph theory
to partition data into clusters by representing the data points as a graph and using
eigenvalues of a similarity matrix from the graph to find clusters.

Figure: Spectral Clustering General Algorithm
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Spectral Clustering General Algorithm
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Spectral Clustering General Algorithm
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Spectral Clustering General Algorithm
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Spectral Clustering General Algorithm
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Spectral Clustering General Algorithm
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Moons Clustering With k-means Algorithm
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Moons Clustering With Spectral Clustering Algorithm
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Spectral Clustering Data
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Limitations of Spectral Clustering

Issue Impact Possible Improvement

High computational cost
(O(n3))

Slow for large datasets
Approximation methods
(e.g., Nyström) for eigen-
values

Parameter sensitivity(σ)
Poor clustering with bad
parameters

Use heuristics for k, me-
dian for all pairwise dis-
tances

Graph connectivity is-
sues(Assuming all points
are connected)

Incorrect eigenvector cal-
culations and clustering

Using compressed sens-
ing theory

21 / 29



Compressed Sensing Theory

• The more zeros a matrix has, the easier it becomes to compute the eigenvalues and
this gives us fewer nonzero eigenvalues to deal with.

Theorem: Compressed Sensing Theorem

Assuming that a dataset is:

i Self-expressive

ii Noise free

iii Has clusters that are independent and disjoint

Compressed sensing is a signal processing technique for efficiently acquiring and
reconstructing a signal, by finding solutions to undetermined linear systems.
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Sparse Optimization

• According to Compressed Sensing Theorem, data points in the same cluster can be
represented as linear combinations of each other.

• Sparse Optimization Helps create a matrix A with as few non-zero elements as
possible using the constrained objective function:

min ∥wi∥1 s.t. si = Swi , wii = 0 (1)

• The constraint wii eliminates the trivial solution of writing a point as a linear
combination of itself.

• The system is undetermined hence there are infinetly many solutions. The main idea
is that amoung all solutions, there exists a sparse solution, wi , whose nonzero entries
correspond to data points from the same subspace as si .

• After solving for the W matrix, the Adjency Matrix can be computed as:

A = |W |+ |W |T
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Objective function

• The constrained objective function can be compactly written in matrix form as

min ∥W∥1 s.t. S = SW , diag (W) = 0 (2)

• The unconstrained objective function takes the form

min
W

F (W ) = µ∥W ∥1 +
1

2
∥SW − S∥2f , diag(W ) = 0 (3)

• Solving this problem is a mess because for some input matrix B

∥B∥2f =
n∑

i=1

n∑
j=1

b2ij → smooth and ∥B∥1 = max
1≤j≤n

n∑
i=1

|bij | → nonsmooth
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FISTA

Fast Iterative Shrinkage-Threshold Algorithm

Algorithm 1 FISTA with Matrix Input

1: Initialize Z1 = W0 = 0 ∈ Rn×n, t1 = 1
2: for k ≥ 1 do:
3: Wk = pµα(Zk) (hold your questions!)
4: diag(Wk) = 0

5: tk+1 =
1+
√

1+4t2k
2

6: Zk+1 = Wk +
(
tk−1
tk+1

)
(Wk −Wk−1)

7: break if∥Wk+1 −Wk∥F < tol
8: else Wk+1 = pµα(Zk+1)
9: return Wk
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Shrinkage Operator

let x ∈ Rn For some function
F (x) = f (x) + g(x)

where f (X ) is a smooth function, g(X ) in non smooth. We can use the quadratic
approximation of F at a given point y ∈ Rn as

Qα(x , y) ≈ f (y) +∇f (y)T (x − y) +
1

2α
∥x − y∥22 + g(x)

if g(x) = µ∥x∥1, Qαµ(x , y) admits a unique minimizer

pµα = arg min
x
{Qαµ(x , y) : x ∈ Rn}
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Shrinkage Operator

pµα = arg min
x
{Qαµ(x , y) : x ∈ Rn}

The solution to this is called the shrinkage operator where for some input v ∈ R

Tµα(v) := max{0, |v | − µα} · sgn(v)
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The End
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