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Introduction

Problem Statement

The purpose of the presentation is to apply unsupervised machine learning techniques to
the high-dimensional data in order to obtain an optimal cluster structure.

The Importance and Applications of Clustering High dimensional Data

Feature Description

Importance Dimensionality reduction, noise reduction,pattern discovery,anomaly-detection.
Applications  Bioinformatics, image processing,market segmentation,Finance.

Table: Summary of the importance and applications of clustering high-dimensional data.
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Presentation of Data
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K-mean Clustering

Definition

K-means clustering is an unsupervised machine learning algorithm used to partition data
into k distinct clusters. The goal of the algorithm is to group data points with similar
features in a unique cluster.
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K-means Clustering
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n — dimension

m — number of data points

k — number of clusters

K-means’ algorithm

Algorithm 1 K-Means Clustering

Require: Dataset S = {s1,5,..., sn}, number of clusters k

Ensure: Cluster centroids C = {c1, 2, ..., ck} and cluster assignments
1: Initialize k centroids randomly from X
2: repeat

3 for all points x; € X do
Assign x; to the nearest centroid ¢; using Euclidean distance
end for
for all centroids ¢; do
Update ¢; to be the mean of all points assigned to it
8: end for
9: until centroids do not change or change is below a threshold
10: return final centroids C and cluster assignments

Ne
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K-means Clustering, k = 3

Clustered Data

10.0 1 ° ® Cluster0
° ® Cluster 1
] L3 Y PY ® Cluster 2
75 °, ° o Y X Centroids
° e®®
®
5.0 | ° ° ° X ° Py
o [ ]
[ ] [ ]
251 e °
° ® ) ) °
° [ ]
0.0 ° L4 °
hd ®
-25{ o X
[ ]
° [ ]
~5.0 1 LJ [ ]
T ° X
[ ]
-7.51 e
Y [ ]
-100{ ® L
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

7/29



K-means Clustering, k = 4

Clustered Data
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K-means Clustering, k = 10

Clustered Data
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Issue Impact Possible Improvement
Incorrect choice of K can

Fixed number of K- .

cluster lead to over clustering or | Use Elbow Method

under clustering

Dimensionality

Distance becomes less
meaningful in high di-
mensions, hence reduc-
ing clustering quality

Apply dimensionality

Sensitive to outliers

Outliers can shift cluster
centriods, leading to in-
nacurate cluster assign-
ments

Detect and remove out-
liers using K-medioids

Limitations of K-means Clustering
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Graph Theory for Dummies

Definition

Data can be treated as a graph. A graph G consists of vertices and edges where vertices

represent the data points and edges represent the similarity/connection between the data

point.

* Defenders

* Midfielders

* Strikers

Goals

Terry

Puyol

Vidic

Rong Messi
Suarez

Benzema

GerrardVLampard

Scholes

Assists
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Spectral Clustering

Definition

Spectral clustering is an unsupervised machine learning algorithm that uses graph theory
to partition data into clusters by representing the data points as a graph and using
eigenvalues of a similarity matrix from the graph to find clusters.

Construct
Construct " .
Adjency Matrix . Lalellaat(r:ifn ’ » Assign Labels

Figure: Spectral Clustering General Algorithm
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Spectral Clustering General Algorithm

Construct CompL L
Clisiirre Laplacian gen Values : . Assign Labels

Matrix

Adjency Matrix

*Represent the data point as a complete graph where the
data points are the vertices and the edges are the
similarities

*Assign a weight to each edge using the formula

2
||Si—sj||2
@y =exp\ =55

+This is the Adjency Matrix, 4 = (a;;)
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Spectral Clustering General Algorithm

SEIEGG Construct

Adjency Matrix Laplacian : . Assign Labels
Matrix

Construct the Graph Laplacian:
« Construct a Diagonal Matrix D such that
Dy = Yoy aij
* Unnormalized Laplacian Matrix:
L=D —-A

* Normalized Laplacian :

_1 _1
L=1-DZAD?2
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Spectral Clustering General Algorithm

Construct Compute
Laplacian . Eigen Values &
Matrix Vectors

Construct St . Assign Labels

Adjency Matrix

« Eigenvalues: They are all non-negative because the
matrix L is symmetric positive definite.

+ Selectthe first k smallest eigen values A; # 0.

* Eigenvectors: Form the new feature subspace, matrix U,
by taking the eigenvectors u; that correspond to the
chosen eigenvalues.

* The columns of U are the calculated eigenvectors.

U=[u, uz, -, U]
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Spectral Clustering General Algorithm

Construct Compute
Laplacian
Matrix

Construct Normalize the

roWs of U . Assign Labels

Adjency Matrix

« Treatthe rows of U as data points.
¢ Create Uy, by normalizing the

rows of U

¢ Apply K- means to the rows of U
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Spectral Clustering General Algorithm

Construct L :
Laplacian : . Assign Labels
Matrix

Construct

Adjency Matrix

« Assign the labels of the data points in

Unorm to the original data pointsin §
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Moons Clustering With k-means Algorithm
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Moons Clustering With Spectral Clustering Algorithm
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Spectral Clustering Data
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Issue

Impact

Possible Improvement

High computational cost

(O(n%))

Slow for large datasets

Approximation methods
(e.g., Nystrom) for eigen-
values

Parameter sensitivity(o)

Poor clustering with bad
parameters

Use heuristics for k, me-
dian for all pairwise dis-
tances

Graph connectivity is-
sues(Assuming all points
are connected)

Incorrect eigenvector cal-
culations and clustering

Using compressed sens-
ing theory

Limitations of Spectral Clustering
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Compressed Sensing Theory

® The more zeros a matrix has, the easier it becomes to compute the eigenvalues and
this gives us fewer nonzero eigenvalues to deal with.

Theorem: Compressed Sensing Theorem

Assuming that a dataset is:
i Self-expressive
i Noise free

iii Has clusters that are independent and disjoint

Compressed sensing is a signal processing technique for efficiently acquiring and
reconstructing a signal, by finding solutions to undetermined linear systems.
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Sparse Optimization

According to Compressed Sensing Theorem, data points in the same cluster can be
represented as linear combinations of each other.

Sparse Optimization Helps create a matrix A with as few non-zero elements as
possible using the constrained objective function:

min ”WiHl s.t. s;= Sw;, w; =0 (].)

The constraint w;; eliminates the trivial solution of writing a point as a linear
combination of itself.

The system is undetermined hence there are infinetly many solutions. The main idea
is that amoung all solutions, there exists a sparse solution, w;, whose nonzero entries
correspond to data points from the same subspace as s;.

After solving for the W matrix, the Adjency Matrix can be computed as:
A=|W|+|w|"
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Objective function

® The constrained objective function can be compactly written in matrix form as
min [|W/|1 st. S=SW | diag(W)=0 (2)
® The unconstrained objective function takes the form
min F(W) = ullWih + SIS — S[? . diag(W) =0 ©

® Solving this problem is a mess because for some input matrix B

n

n n

1B||? = b% — smooth and IB|l1 = max |bjj| — nonsmooth

= 1<j<n =
I=1 J= 1=

24 /29



FISTA

Fast lterative Shrinkage-Threshold Algorithm

Algorithm 1 FISTA with Matrix Input
1: Initialize Z1 = W =0 € R™" t; =1
2: for kK > 1 do:
3: Wi = pua(Zk) (hold your questions!)
4: diag( Wk) =0

14+4/14412
tkt1 = 2 :
-1
Zis = W+ (42 ) (We = Wiea)

break if || W11 — Wi]|r < tol

else Wit1 = pua(Zi+1)
return Wy

o e N o g
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Shrinkage Operator

let x € R” For some function
F(x) = f(x) + g(x)

where f(X) is a smooth function, g(X) in non smooth. We can use the quadratic
approximation of F at a given point y € R" as

1
Qu(xy) = F(¥) + V() (x = y) + o -lIx = yl5 + (%)
if g(x) = pl|x|l1, Qaulx,y) admits a unique minimizer

Pua = arg mXin{Qau(Xay) tX e Rn}
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Shrinkage Operator

Pua = arg mXin{Qau(Xay) SX e Rn}

The solution to this is called the shrinkage operator where for some input v € R

T a(v) == max{0, |v| — pa} - sgn(v)
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